Торіс		Ref	Ex
Radians	 Radian Measure Understand and use radians as a measure of angles Convert between degrees and radians Know exact values of angles measured in radians 	P5.1 P5.3	5A 5B
	 Arc Length and Area of Sector or Segment Find an arc length using radians Find areas of sectors and segments using radians. 	P5.1	5C 5D
	Solving Trigonometric EquationsUse and apply models that involve quadratic functions	P5.7	5E
	 Small angle approximations Use approximate trigonometric values when Θ is small. 	P5.2	5F
Differentiation	 Trigonometric functions 1 (sin x and cos x) Differentiate sin x and cos x from first principles Differentiate sin kx and cos kx. 	P7.1	9A
	 Exponentials and Logarithms Differentiate exponentials and logarithms including e^{kx}, a^{kx}, ln x and ln kx. 	P7.2	9B
	 Chain Rule Differentiate composite functions and functions of functions using the chain rule. 	P7.4	9C
	 Product Rule Differentiate the product of two functions using the product rule. 	P7.4	9D
	 Quotient Rule Differentiate the quotient of two functions using the product rule. 	P7.4	9E
	 Trigonometric functions 2 Differentiate tan kx, cosec kx, sec kx and cot kx Use the chain rule to differentiate composite trigonometric functions. 	P7.4	9F
	 Parametric Differentiation Differentiate functions defined parametrically without converting to Cartesian form. Use this to find equations of tangents and normals. 	P7.5	9G
	 Implicit Differentiation Differentiate functions defined implicitly. Use this to find equations of tangents and normal. 	P7.5	9H
	 Second Derivatives Use the second derivative to determine whether a curve is convex or concave on a given domain. Use it to determine the nature of a stationary point. 	P7.1	91
	 Rates of Change Use the chain rule to connect rates of change in situations involving more than one variable. 	P7.4	9J
	Term 1 Assessment		

Торіс		Ref	Ex		
Integration	 Standard Functions Integrate e^{kx}, 1/x, sin kx, cos kx and other trigonometric functions 	P8.2	11A		
	 f(ax+b) Integrate a function of the form f(ax+b) by using the reverse chain rule for differentiation. 	P8.2	11B		
	 Using Trigonometric Identities Use trigonometric identities to make the integrant into something that can be integrated. 	P8.2	11C		
	Integration "by sight" • Integrate by sight functions of the form: $k \frac{f'(x)}{f(x)} \text{ or } kf'(x)(f(x))^n$	P8.5	11D		
	 Integration by Substitution Use a substitution to simplify an integral Includes definite integrals. 	P8.5	11E		
	 Integration by Parts Use integration by parts to integrate a product of functions Use this technique to integrate ln x, Use more than one application of this method e.g. for integrating e^x sin x. 	P8.5	11F		
	 Partial Fractions Integrate algebraic fractions using partial fractions 	P8.6	11G		
	 Finding Areas under or between curves Use any of the integration techniques to find areas under or between curves. 	P8.3	11H		
	 Trapezium Rule Use the trapezium rule to approximate the area under a curve whose function you cannot integrate algebraically. Determine whether this gives an under or over estimate. 	P9.4	111		
	 Differential Equations Solve first order differential equations by separating the variables. Interpret the solution of a DE in the context of solving a problem. 	P8.7 P8.8	11J 11K		
Term 2 Assessment					

Торіс		Ref	Ex
Vectors in 3D	 Vectors in 3 dimensions Use vectors in 3D both in column vector form and i, j, k unit vector form. Find the angle between a 3D vector and any of the coordinate axes 	P10.1	12A 12B
	 Geometric Problems Solve geometric problems involving vectors in 3D 	P10.5	12C
	 Mechanics Problems Model problems in mechanics using 3D vectors 	P10.5	12D
Moments	 Definition Understand the definition of a moment Calculate the turning effort of a force applied to a rigid body – the moment. 	A9.1	A4A
	 Resultant Moments Find the resultant moment for several coplanar forces acting on a rigid body. 	A9.1	A4B
	 Equilibrium Solve problems involving uniform rods in equilibrium 	A9.1	A4C
	 Centres of Mass Solve problems involving non-uniform rods in equilibrium by finding its centre of mass. 	A9.1	A4D
	 Tilting Solve problems involving uniform rods on the point of tilting. 	A9.1	A4E
Forces and Friction	 Resolving Forces Resolve forces into components Use the triangle law to find a resultant force. 	A8.2 A8.4 A8.5	A5A
	 Inclined Planes Resolve forces into components parallel to and at right angles to the inclined plane 	A8.4 A8.5	A5B
	 Friction Understand Friction and the coefficient of friction Use F ≤ μR model for friction 	A8.6	A5C
Projectiles	 Horizontal Projection Model motion under gravity for an object projected horizontally 	A7.5	A6A
	 Projection at any angle Resolve velocity into horizontal and vertical components. Solve problems involving particles projected at an angle 	A7.3 A7.5	A6B A6C
	 Projectile motion formulae Derive the formulae for time of flight, range and greatest height, and the equation of the path of a projectile. 	A7.5	A6D
	Term 3 Assessment		

Торіс		Ref	Ex	
Applications of Forces	 Static Particles Use force diagrams to model objects in static equilibrium. Find an unknown force when a system is in equilibrium Solve statics problems involving weights, tension and pulleys. Understand and solve problems involving limiting equilibrium and friction. 	A8.4 A8.6	A7A A7B A7C	
	 Static Rigid Bodies Solve static problems including rotational forces acting on an object. 	A8.6	A7D	
	 Dynamics and Inclined Planes Solve problems involving motion on smooth or rough inclined planes. 	A8.6	A7E	
	 Connected Particles Solve problems involving connected particles that require the resolution of forces. 	A8.5 A8.6	A7F	
Further Kinematics	 Vectors in Kinematics Use two dimensional vectors to describe motion in a plane. Work with vectors for displacement, velocity and acceleration when using the vector equations of motion. Use vector equations of motion for projectiles in a vertical plane 	A7.3	A8A A8B	
	 Variable Acceleration Understand how to model variable acceleration as a function of time. Use calculus for harder functions of time, including trigonometric or exponential functions. Differentiate and integrate vectors with respect to time. Use calculus with vectors to solve problems involving motion in two dimensions with variable acceleration. 	A7.4	A8C A8D A8E	
Term 4 Assessment				